The discovery of X-rays and radium, their use in medical applications and the emergence of harmful radiation effects on hospital staff underscore a need for radiation protection awareness [9]. Although exposure to radiation in medical imaging devices is minimized by technology, they are not entirely negligible. Since radiation has stochastic dose-dependent and dose-independent cancer-causing effects [10], and given the cumulative radiation doses healthcare workers (e.g. operating room staff) are exposed to over time, there is an increased risk of cancer and radiation-related illnesses among these groups [10]. It is therefore imperative that healthcare workers using radioactive technologies such as fluoroscopes comply with the principles of ALARA ("as low as reasonably achievable"[9]. Indeed, the most important form of protection from the health risks associated with radiation exposure is the use of appropriate radiation-specific PPE [11, 12].
Our study is the first to evaluate awareness among urology staff about the systemic effects of ionizing radiation in Turkey. We found that the responses regarding the negative effects of radiation on organ systems were not influenced by whether participants received training. This further illustrates that radiation education may need to be revised.
Many studies have shown that most urologists do not take proper protective measures during fluoroscopy procedures and neglect to use proper PPE [10, 13, 14]. As previously reported [1, 8], our findings showed that urologists and their assistants are exposed to higher single doses of radiation during a procedure, while other personnel are exposed to higher cumulative radiation doses over time. In a study by Söylemez et al., they showed that not all urology healthcare workers used a dosimeter nor did they don adequate PPE [4]. In another study, the same group also revealed that urologists do not regularly use gonadal protection [5].
In this study, we found that irrespective of their occupation, half of the participants wore lead aprons and almost a third used thyroid protectors. The proximity of personnel to the fluoroscope during procedures may explain this observation. Indeed, most faculty members and residents, but none of the nurse respondents, stated that they used gonadal protection. When we assessed adherence to the usage of safety glasses and gloves, faculty members and assistants weakly complied with the use of these types of PPE, while nurses and radiology technicians showed strong compliance. One possible explanation for this observation is that safety glasses might impair the physician’s vision during the procedure, which could influence compliance with this type of PPE.
Similar to our study, others have shown that lead aprons and thyroid protectors are more commonly used than other types of PPE [10, 11]. While we expected to see a relationship between education level and PPE compliance, the observed findings did not reveal such a correlation. Hence, we agree with the explanation put forth by Söylemez et al. that these types of PPE are non-ergonomic and thus affected PPE compliance among the participants in our study [4]. Furthermore, many studies have shown that urology operating room staff receive insufficient training on the dangers of radiation [15,16,17,18]. With only 42.2% of respondents receiving radiation-specific safety training, our findings suggest that this has still not improved among personnel working in the urology field.
The individual permissible radiation dose is determined by law [19], and it has been advised that dosimetry is used in cases where threshold values are exceeded [1]. In our study, we found that 43.3% of the participants used dosimetry. While all radiology technicians stated that they used dosimetry, a similar level of compliance was not observed in the other groups. Interestingly, dosimeter usage was more commonly practised among participants in education, research and state hospitals, which may be related to more frequent fluoroscope usage in these centres.
Warning signs must be used in areas where there is a high risk of radiation exposure to increase patient and staff member safety. As such, radiation warning signs should be posted in areas where fluoroscopy is used. However, only 66.5% of the participants stated that there was such a warning sign in their working environment. This could be because the warning signs posted are not striking enough to capture the personnel’s attention. Thirty-seven per cent of participants stated that they performed fluoroscopy at least 4 times in their daily practice. Of these respondents 12.1% were radiology technicians, 8.1% were auxiliary healthcare personnel, and 5.8% were assistants. Despite such regular fluoroscopy usage, there is gravely insufficient awareness about the dangers of radiation and the use of PPE.
The main limitation of this research is the small numbers of respondents that fully completed the survey. The small number may be related to the fact that internet usage is not a preferred tool. However, this questionnaire has further underscored the lack of radiation safety compliance in Turkey. Reaching the participants online was another limitation. However, our approach enabled anonymity and allowed participants adequate time to reflect on their answers, rather than providing an answer immediately.
Though similar to previously published studies, our study is significant because it highlights the current state of radiation awareness among urology operating room staff at all levels in Anatolia, Turkey.